Existence and Convergence of an Mhd Approximate Deconvolution Model

نویسندگان

  • Luigi C. Berselli
  • Davide Catania
  • Roger Lewandowski
چکیده

Résumé. On considère un modèle pour la simulation des tourbillons à grande échelle pour les équations de la magnétohydrodynamique (MHD). On étudie un modèle alpha obtenu par la méthode de Stolz et Adams, qui utilisent des opérateurs de déconvolution à la van Cittert pour l’approximation des équations. On considère des conditions au bord périodiques et on utilise le filtre de Helmholtz. On montre l’existence et l’unicité d’une solution faible régulière pour un système avec filtre et déconvolution dans les deux équations. On montre aussi que la solution converge à la solution des équations filtrées de la MHD, au sens approprié, lorsque le paramètre de la déconvolution va à l’infini. On peut étendre ces résultats au problème avec le filtre seulment pour l’équation de la vitesse.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some New Existence, Uniqueness and Convergence Results for Fractional Volterra-Fredholm Integro-Differential Equations

This paper demonstrates a study on some significant latest innovations in the approximated techniques to find the approximate solutions of Caputo fractional Volterra-Fredholm integro-differential equations. To this aim, the study uses the modified Adomian decomposition method (MADM) and the modified variational iteration method (MVIM). A wider applicability of these techniques are based on thei...

متن کامل

Dirichlet series and approximate analytical solutions of MHD flow over a linearly stretching ‎sheet

The paper presents the semi-numerical solution for the magnetohydrodynamic (MHD) viscous flow due to a stretching sheet caused by boundary layer of an incompressible viscous flow. The governing partial differential equations of momentum equations are reduced into a nonlinear ordinary differential equation (NODE) by using a classical similarity transformation along with appropriate boundary cond...

متن کامل

Chebychev optimized approximate deconvolution models of turbulence

If the Navier-Stokes equations are averaged with a local, spacial convolution type filter, φ = gδ∗φ, the resulting system is not closed due to the filtered nonlinear term uu. An approximate deconvolution operator D is a bounded linear operator which satisfies u = D(u) + O(δ), where δ is the filter width and α ≥ 2. Using a deconvolution operator as an approximate filter inverse, yields the closu...

متن کامل

An approach based on statistical spline model for Volterra-Fredholm integral equations

‎In this paper‎, ‎an approach based on statistical spline model (SSM) and collocation method is proposed to solve Volterra-Fredholm integral equations‎. ‎The set of collocation nodes is chosen so that the points yield minimal error in the nodal polynomials‎. ‎Under some standard assumptions‎, ‎we establish the convergence property of this approach‎. ‎Numerical results on some problems are given...

متن کامل

Convergence Analysis of a Fully Discrete Family of Iterated Deconvolution Methods for Turbulence Modeling with Time Relaxation

We present a general theory for regularization models of the Navier-Stokes equations based on the Leray deconvolution model with a general deconvolution operator designed to fit a few important key properties. We provide examples of this type of operator, such as the modified TikhonovLavrentiev and modified Iterated Tikhonov-Lavrentiev operators, and study their mathematical properties. An exis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013